Notes for Math 451

Advanced Calculus I

Albon Wu

January 17, 2024

Contents

0	Introduction	Introduction													2					
1																				3
	1.1 The Natur	al Numbers IN													 					3
	1.2 The Intege	ers $\mathbb Z$													 					4
	1.3 The Ration	nal Numbers Q																		4
	1.4 The Real N	Numbers $\mathbb R$																		5
	1.5 The Comp	leteness Axiom							•											8
2	Sequences	Sequences											10							
	2.1 Limits of S	Sequences												 •				•		10
3	σ -algebras*	σ -algebras*											11							
	3.1 The Basics	3																		11
	3.2 Borel σ -al	gebras													 					12

^{*}Additional measure theory content.

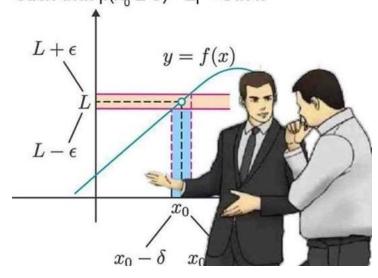
0 Introduction

Course in elementary analysis. Sequences, differentiation, and integration, with additional notes on measure theory basics.

Textbook: *Elementary Analysis: The Theory of Calculus* by Ross. *Measures, Integrals and Martingales* by Schilling.

mathematician:

*slaps interval between L - ϵ and L + ϵ * this bad ϵ > 0 can fit so much δ > 0 such that $|f(x_0 \pm \delta) - L| < \epsilon$ in it



Source: "Measure 0 Memes for Lebesgue Integrable Teens"

1 Sets

1.1 The Natural Numbers N

 $\mathbb{N} = \{0, 1, 2, 3, ...\} \subset \mathbb{Z}$ is the set of natural numbers (some authors exclude 0). Below are some properties of \mathbb{N} :

- N1) IN is not empty.
- N2) IN has a smallest element.
- N3) Every $n \in \mathbb{N}$ has a successor $n + 1 \in \mathbb{N}$.
- N4) If $X \subset \mathbb{N}$ is such that $0 \in X$ and $n \in X \longrightarrow n+1 \in X$, then $X = \mathbb{N}$.

The last property says that \mathbb{N} is the smallest set with the first three properties. It is then natural to conjecture the following:

Claim. The four properties above uniquely characterize **N**.

We will formulate this with more precise language later. First, we introduce some familiar technology.

Theorem 1.1.1 (Induction). Let P(n) be a logical statement with parameter $n \in \mathbb{N}$. Assume P(0) is true and $P(n) \to P(n+1)$. Then $\forall n \in \mathbb{N}$, P(n) is true.

Proof. Define
$$X := \{n \in \mathbb{N} \mid P(n) \text{ is true}\} \subset \mathbb{N}$$
. Then, since $0 \in X$ and $n \in X \longrightarrow n+1 \in X$, we know $X = \mathbb{N}$.

We also introduce the concept of recursion. To construct a collection $(S_n)_{n\in\mathbb{N}}$ of sets or maps, it is enough to construct S_0 and S_{n+1} given S_n . For instance, to construct $f: \mathbb{N} \to S$, it is enough to specify $f(0) \in S$ and $f(n+1) \in S$ given $f(n) \in S$.

Lemma 1.1.1. Let
$$(S_n)_{n\in\mathbb{N}}$$
 and $(S'_n)_{n\in\mathbb{N}}$ be collections of sets. Assume $S_0 = S'_0$ and $S_n = S'_n \longrightarrow S_{n+1} = S'_{n+1}$. Then $S_n = S'_n$ for $n \in \mathbb{N}$.

Proof. Follows directly from induction on *n*.

Definition 1.1.1. A **Peano triple** (P, e, s) consists of:

- a set P
- an element $e \in P$
- an injective map $s: P \rightarrow P$

such that

- P1) $e \notin S(P)$
- P2) If $X \subset P$ is such that $e \in X$ and $S(X) \subset X$, then X = P.

Peano triples are essentially abstractions of the properties of \mathbb{N} we stated above. For instance, it is easy to show that for a Peano triple (P, e, s), we have $P = \{e\} \cup S(P)$ using P2). If we use the successor function for s, the result mirrors property N4).

Now we can address our conjecture from earlier.

Theorem 1.1.2. Let (P, e, s) be a Peano triple. There exists a unique bijection $f: \mathbb{N} \to P$ such that f(0) = e and f(n+1) = s(f(n)).

This result says that, for any Peano triple (P, e, s), we can map every natural number n to one element in P whose successor is the image of n + 1. That is, all Peano triples are equivalent to \mathbb{N} up to bijections.

Proof. f is recursively defined, meaning it is unique by Lemma 1.1.1. It suffices to show it is bijective.

For injectivity, define the logical statement $T(n) := (\forall m \in \mathbb{N} : f(n) = f(m) \Rightarrow n = m)$. We induce on n. First, consider T(0) and take $m \in \mathbb{N}$. If m = n = 0, we are done. Otherwise, we can write m = m' + 1 for $m' \in \mathbb{N}$, and we write

$$f(m) = f(m' + 1) = S(f(m')) \in S(P).$$

By definition, $e \notin S(P)$, so $f(m) \neq e = f(n)$. This shows the contrapositive of T(0).

Now suppose T(n). Again, we will show the contrapositive. Take $m \in \mathbb{N}$ such that $m \neq n + 1$. If m = 0, we are done by T(0). Otherwise, m = m' + 1 for $m' \in \mathbb{N}$. So $m' + 1 \neq n + 1 \Rightarrow m' \neq n$, and $f(m') \neq f(n)$ by assumption. It follows that

$$f(n + 1) = s(f(n)) \neq s(f(m')) = f(m' + 1)$$

since *s* is injective.

It remains to show surjectivity. Let $X = f(\mathbb{N}) \subseteq P$. Now $e = f(0) \in f(\mathbb{N}) = X$ and $s(X) = s(f(\mathbb{N})) = f(\mathbb{N} + 1) \subseteq f(\mathbb{N}) = X$. By P2), X = P, completing the proof.

1.2 The Integers \mathbb{Z}

 $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ is the set of integers. Although the construction of \mathbb{Z} as "the natural numbers and their negatives" is intuitive, it would be nice to define \mathbb{Z} in a way that only uses \mathbb{N} and its axioms without resorting to ad-hoc definitions like "negative" and their behavior with arithmetic.

One construction might be to represent each integer as a difference of natural numbers. Since -5 = 0 - 5, we would represent -5 as (0, 5). We would also need a new notion of equality since (0, 5) and (1, 6) represent the same number; perhaps $(a, b) \equiv (a', b') \iff a - b = a' - b'$.

[to be continued...]

1.3 The Rational Numbers Q

 $\mathbb{Q} := \{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \}$ is the set of rational numbers. $3 \in \mathbb{Q}$, while $\sqrt{2} \notin \mathbb{Q}$. The latter is part of a more general set called the algebraic numbers:

Definition 1.3.1. An **algebraic number** is any *r* that satisfies

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + x_0 = 0$$

where each $c_i \in \mathbb{Z}$, $c_n \neq 0$, and $n \geq 1$.

Example 1.3.1. The quantity

$$\sqrt{\frac{4-2\sqrt{3}}{7}}$$

is an algebraic number.

Proof. Denote the given value by a. Then $a^2 = \frac{4-2\sqrt{3}}{7}$, so $2\sqrt{3} = 4-7a^2$, which expands to $49a^4 - 56a^2 + 4 = 0$. Therefore, a is a root of $49x^4 - 56x^2 + 4 = 0$.

The following useful result is called the Rational Root Theorem.

Theorem 1.3.1. Consider the polynomial equation

$$c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0 = 0,$$

where each $c_i \in \mathbb{Z}$, $c_n \neq 0$, and $n \geq 1$. Let $r = \frac{c}{d}$ be a rational root, where c, d are coprime integers. Then $c \mid c_0$ and $d \mid c_n$.

Proof. We write

$$c_n\left(\frac{c}{d}\right)^n+c_{n-1}\left(\frac{c}{d}\right)^{n-1}+\cdots+c_1\left(\frac{c}{d}\right)+c_0=0.$$

Multiply both sides by d^n to obtain

$$c_n c^n + c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n = 0.$$

Therefore,

$$-c_n c^n = c_{n-1} c^{n-1} d + \dots + c_1 c d^{n-1} + c_0 d^n.$$

Since d divides the right side, it must also divide $-c_nc^n$. But because (c, d) = 1, we also have $(c^n, d) = 1$, so $d \mid c_n$. We arrive at $c \mid c_0$ analogously after solving for c_0d^n .

The RRT is especially useful in the special case of $c_n = 1$. Then, since $d \mid c_n$, we have d = 1, so the only possible rational roots of a monic polynomial are integers. We can use this fact to determine whether certain numbers are rational.

Example 1.3.2. $\sqrt[3]{6} \notin \mathbb{Q}$.

Proof. The quantity is a solution of $x^3 - 6 = 0$. By RRT, the only possible rational solutions are $\pm 1, \pm 2, \pm 3, \pm 6$. By inspection, none of these are actually roots. Therefore, any solution to the equation, including the given quantity, is irrational.

5

1.4 The Real Numbers \mathbb{R}

Definition 1.4.1. Take a set F. Then $(F, +, \cdot)$ is a **field** if:

- 1. $0 \neq 1$
- 2. + and \cdot are associative
- 3. + and \cdot are commutative

- 4. 0 is the additive identity
- 5. 1 is the multiplicative identity
- 6. + and \cdot inverses exist
- 7. · distributes over +

It is an **ordered field** with order structure \leq if, for $a, b, c \in F$:

- 1. $a \le b$ or $b \le a$
- 2. If $a \le b$ and $b \le a$, then a = b
- 3. If $a \le b$ and $b \le c$, then $a \le c$
- 4. If $a \le b$, then $a + c \le b + c$
- 5. If $a \le b$ and $0 \le c$, then $ac \le bc$

 $\mathbb Q$ and $\mathbb R$ are ordered fields. These properties follow directly from the field axioms:

Theorem 1.4.1. For a field F and $a, b, c \in F$:

1.
$$a + c = b + c \Rightarrow a = b$$

2.
$$a \cdot 0 = 0$$

$$3. \ a(-b) = -ab$$

$$4. (-a)(-b) = ab$$

5. If
$$c \neq 0$$
, then $ac = bc \implies a = b$

6.
$$ab = 0$$
 implies $a = 0$ or $b = 0$

Proof.

- 1. Follows from right addition of -c to both sides.
- 2. See 412 notes.
- 3. $ab + a(-b) = a(b + (-b)) = a \cdot 0 = 0$. So a(-b) is the additive inverse of ab, as desired.
- 4. $(-a)(-b) + a(-b) = (a + (-a))(-b) = 0 \cdot (-b) = 0$. By the previous part, (-a)(-b) then equals ab, the additive inverse of -ab.
- 5. Follows from right multiplication by c^{-1} on both sides.
- 6. Suppose $b \neq 0$ and ab = 0. Then $0 = ab(b^{-1}) = a$. Otherwise, done.

We can also prove some results using the ordered field axioms:

Theorem 1.4.2. For a field F and $a, b, c \in F$:

1.
$$a \le b \Longrightarrow -b \le -a$$

2.
$$a \le b$$
 and $c \le 0$ implies $bc \le ac$

3.
$$0 \le a \text{ and } 0 \le b \text{ implies } 0 \le ab$$

4. $0 \le a^2$ for all a

 $5. \ 0 < 1$

6. $0 < a \text{ implies } 0 < a^{-1}$

7. $0 < a < b \text{ implies } 0 < b^{-1} < a^{-1}$

Proof.

1. $a \le b$ implies $a + (-a + (-b)) \le b + (-a + (-b))$, so $-b \le -a$.

2. By the previous part, $0 \le -c$, so $-ac \le -bc$ and $bc \le ac$.

3. $0 \cdot a \le ba \implies 0 \le ab$.

4. $0 \le a$ is straightforward. If $a \le 0$, we have $0 \le a \cdot a = a^2$ by (1).

5. Suppose $1 \le 0$. Then $0 \cdot 1 \le 1 \cdot 1 \Rightarrow 0 \le 1$, a contradiction.

6. Suppose 0 < a but $a^{-1} < 0$. Then $0 \cdot a^{-1} > aa^{-1} \Rightarrow 0 > 1$, a contradiction.

7. Adapt the proof of (1) using multiplicative inverses to obtain $b^{-1} < a^{-1}$. Then $0 < b^{-1}$ follows from (5).

Now we introduce absolute value and the concept of distance.

Definition 1.4.2. For $a \in \mathbb{R}$, the **absolute value** of a, denoted |a|, is the following function:

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x \le 0 \end{cases}$$

Definition 1.4.3. For $a, b \in \mathbb{R}$, the **distance** between a and b, denoted dist(a, b), is defined as dist(a, b) = |a - b|.

Theorem 1.4.3. *Take a, b* \in \mathbb{R} *. Then the following properties hold:*

1. $|a| \ge 0$

2. $|ab| = |a| \cdot |b|$

3. $|a + b| \le |a| + |b|$

Proof.

1. Follows by definition.

2. It is straightforward to check that if a and b have the same sign, $|ab| = |a| \cdot |b| = ab$. Otherwise, $|ab| = |a| \cdot |b| = -ab$.

3. By definition, $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$. So $-|a| - |b| \le a + b \le |a| + |b|$. This implies $\pm (a + b) \le |a| + |b|$, so $|a + b| \le |a| + |b|$.

The last result is also called the **Triangle Inequality** because for $x, y, z \in \mathbb{R}$, we can substitute a = x - y and b = y - z to obtain $|x - z| \le |x - y| + |y - z| \Rightarrow \operatorname{dist}(x, z) \le \operatorname{dist}(x, y) + \operatorname{dist}(y, z)$. Geometrically, this is analogous to the statement that the combined length of any two sides of a triangle is greater than the length of the third.

1.5 The Completeness Axiom

Some sets have "gaps." For instance, the graph of $x^2 - 2 = 0$ intersects with the *x*-axis twice—at $(\pm \sqrt{2}, 0)$. Both *x*-intercepts are irrational, so the parabola passes through two "gaps" in the rational numbers.

R, on the other hand, is complete: it has no such gaps. This is provided by the **completeness axiom**. Firstly, we will introduce some terminology.

Definition 1.5.1. Take a non-empty $S \subseteq \mathbb{R}$. If $s_0 \in S$ and $s \leq s_0$ for any $s \in S$, then s_0 is the **maximum** of S, denoted $s_0 = \max S$. We define the **minimum** $\min S$ analogously.

Every finite, non-empty subset of \mathbb{R} has a maximum and minimum, but the same is not true for subsets like (1,3] or \mathbb{Z} .

Definition 1.5.2. Take a non-empty $S \subseteq \mathbb{R}$. If there exists $M \in \mathbb{R}$ such that $s \leq M$ for all $s \in S$, then M is an **upper bound of** S and the set is **bounded above**. The **lower bound** is defined analogously; if one exists, S is **bounded below**.

S is **bounded** if it is bounded above and below.

Note that a lower/upper bound does not need to be in the set, nor is it in general unique. Consider the set $A = \{r \in \mathbb{Q} \mid 0 \le r \le \sqrt{2}\}$. Any non-positive real number is a lower bound, and any real number at least $\sqrt{2}$ is an upper bound.

We can, however, say that 0 is the largest lower bound and $\sqrt{2}$ is the smallest upper bound. This motivates the next definition:

Definition 1.5.3. Take a non-empty $S \subseteq \mathbb{R}$. If S is bounded above and has a least upper bound s_u , we say s_u is the **supremum** of S and write $s_u = \sup S$.

The greatest lower bound s_l , if it exists, is called the **infimum** of S and is denoted $s_l = \inf S$.

So, from earlier, we have $\sup A = \sqrt{2}$ and $\inf A = 0$. In general, if a set has a maximum/minimum, it is also the set's supremum/infimum, respectively.

Some sets, like open intervals, do not have a min/max but do have a sup/inf. For instance, $B = \{x \in \mathbb{R} \mid x^2 < 10\} = (-\sqrt{10}, \sqrt{10})$ has sup $B = \sqrt{10}$ and inf $B = -\sqrt{10}$ but no min/max.

Now we introduce the **completeness axiom**:

Axiom 1.5.1. Every non-empty $S \subseteq \mathbb{R}$ that is bounded above has a least upper bound. That is, sup S exists and is a real number.

This doesn't hold for Q, and the set A from above is a counterexample since $\sqrt{2} \notin \mathbb{Q}$. We can show an analogous result for sets bounded below.

Corollary 1.5.1. Every non-empty $S \subseteq \mathbb{R}$ that is bounded below has a greatest upper bound. That is, inf S exists and is a real number.

Proof. Consider $-S = \{-s \mid s \in S\}$. We claim $-\sup(-S) = \inf S$. For intuition, plot each point of S on a number line. The leftmost bound corresponds to the rightmost one when S is reflected about 0. And since $-S \subseteq \mathbb{R}$, $\sup(-S)$ does in fact exist.

Denote $s_0 = \sup(-S)$. We must first show that $-s_0$ is a lower bound of S, namely $-s_0 \le s$ for all $s \in S$. By definition, we have $-s \le s_0$, and the result directly follows.

We also need to show $-s_0$ is the greatest lower bound: if $c \le s$ for all $s \in S$, then $c \le -s_0$. Let d = -c; then we have $-s \le d$. But by construction of s_0 , this implies $s_0 \le d$, so $c = -d \le -s_0$, as desired.

Here are some more intuitive results about \mathbb{Q} and \mathbb{R} .

Theorem 1.5.1 (Archimedian Property). If a > 0 and b > 0, then there exists positive $n \in \mathbb{Z}$ where na > b.

Proof. Suppose the contrary; that there exist a, b > 0 where $na \le b$ for all $n \in \mathbb{N}$. Then b is an upper bound for $S = \{na \mid n \in \mathbb{N}\}$. Since $S \subseteq \mathbb{R}$, $s_0 = \sup S$ exists.

Now note $s_0 - a < s_0$, so $s_0 - a$ is not an upper bound of S. That is, there exists $n_0 \in \mathbb{N}$ such that $s_0 - a < n_0 a$. But this implies $s_0 < (n_0 + 1)a \in S$, a contradiction.

Theorem 1.5.2 (Denseness of \mathbb{Q}). *If* $a, b \in \mathbb{R}$ *and* a < b, *there exists* $r \in \mathbb{Q}$ *such that* a < r < b.

Proof. If we write $r = \frac{m}{n}$ for $m, n \in \mathbb{Z}$, it suffices to show an < m < bn. Firstly, since b - a > 0, we pick $n \in \mathbb{N}$ such that $n(b - a) > 1 \implies bn - an > 1$, which exists due to the Archimedian property.

We now use the fact that the Archimedian property directly implies, for any real number, there exists a larger natural number. Let $k > \max(|an|, |bn|)$ where $k \in \mathbb{Z}$, so -k < an < bn < k. We then construct $K = \{j \in \mathbb{Z} \mid -k \le j \le k\}$ and $T = \{j \in K \mid an < j\}$, which are both non-empty since they both contain k. Denote $m = \min T$; then -k < an < m.

But since m > -k, we have $m - 1 \in K$. By choice of m, we know $m - 1 \notin T \implies m - 1 \le an$, which implies $m \le an + 1 < bn$.

Combining an < m and m < bn, we obtain an < m < bn, as desired.

Finally, we address the symbols $+\infty$ and $-\infty$. They are *not* real numbers, but they are useful in expressing unbounded intervals. We can write $[a, \infty) = \{k \in \mathbb{R} \mid k \ge a\}$.

Also, we write sup $S = +\infty$ if S is not bounded above, and analogously for inf $S = -\infty$.

2 Sequences

2.1 Limits of Sequences

Definition 2.1.1. A **sequence** is a function whose domain is a set of the form $\{n \in \mathbb{Z} \mid n \ge m\}$. Usually, $m \in \{1, 0\}$.

By convention, we denote the sequence by s and the value at n by s_n . The entire sequence can be written as $(s_n)_{n\in\mathbb{N}}$, or, more generally, $(s_n)_{n=m}^{\infty}$. Sometimes, we drop the subscript and write (s_n) when the value of m is understood from context or irrelevant.

For instance, $(s_n)_{n\in\mathbb{N}}$ where $s_n=\frac{1}{n^2}$ corresponds to the sequence $(1,\frac{1}{4},\frac{1}{9},\ldots)$.

Definition 2.1.2. A sequence of numbers **converges** to $s \in \mathbb{R}$ if, for all $\epsilon > 0$ there exists a number N such that n > N implies $|s_n - s| < \epsilon$.

If (s_n) converges to s, we write $\lim_{n\to\infty} s_n = s$ or simply $s_n \to s$, and s is called the **limit** of (s_n) . If (s_n) does not converge to a real number, it diverges.

Example 2.1.1. Prove $\lim \frac{3n+1}{7n-4} = \frac{3}{7}$.

Proof. We write

$$\left|\frac{3n+1}{7n-4}-\frac{3}{7}\right|<\epsilon\Longleftrightarrow\left|\frac{19}{7(7n-4)}\right|<\epsilon\Longleftrightarrow\frac{19}{49\epsilon}+\frac{4}{7}< n.$$

The last step follows because 7(7n - 4) > 0 if we pick a positive n.

So, for all
$$\epsilon > 0$$
, we have $n > \frac{19}{49\epsilon} + \frac{4}{7}$ implies $\frac{3n+1}{7n-4} - \frac{3}{7} < \epsilon$.

3 σ -algebras*

3.1 The Basics

Given a set *X* and $A \subset X$, denote $A^c = X \setminus A$.

Definition 3.1.1. A σ -algebra \mathcal{A} on a set X is a family of subsets of X with the following properties:

- 1. $X \in \mathcal{A}$
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
- 3. $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}\Longrightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$

A set $A \in \mathcal{A}$ is said to be **measurable** or \mathcal{A} -**measurable**.

The third requirement says that the union of countably many subsets of A must also be a subset of A.

Theorem 3.1.1. Consider a σ -algebra A. Then the following properties hold:

- $\emptyset \in \mathcal{A}$
- $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$
- $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}\Longrightarrow\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}.$

Proof.

- Since $X \in \mathcal{A}$, we write $\emptyset = X^c \in \mathcal{A}$ by properties 1 and 2.
- Follows directly from property 3.
- By property 2, we write $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}\Longrightarrow (A_n^c)_{n\in\mathbb{N}}\subset\mathcal{A}$. Then we use DeMorgan to obtain

$$\left(\bigcap_{n\in\mathbb{N}}A_n\right)^c=\bigcup_{n\in\mathbb{N}}A_n^c\in\mathcal{A}\Longrightarrow\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}.$$

Example 3.1.1. Denote the cardinality of a set *A* by #*A*. Show that the following set is a σ -algebra:

$$\mathcal{A} := \{ A \subset X : \#A \le \mathbb{N} \text{ or } \#A^c \le \mathbb{N} \}.$$

That is, A is the set of countable subsets of X and their complements.

Proof. We show that A satisfies the three properties of a σ -algebra.

- 1. $X^c = \emptyset$, which is countable. Hence $X \in \mathcal{A}$.
- 2. If $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$ because $(A^c)^c = A$.

3. Fix a set of (A_n) and suppose all are countable. Then $\bigcup_{n \in \mathbb{N}} A_n$ is the countable union of countable sets; hence, is is countable.

Now suppose some $A_i \in \mathcal{A}$ is uncountable. Then A_i^c must be countable, so we write

$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)^c=\bigcap_{n\in\mathbb{N}}A_n^c\subset A_i^c.$$

So the leftmost expression is countable, and thus its complement is in A.

Theorem 3.1.2 (Existence of generators). For every system of sets $G \subset \mathcal{P}(X)$ there exists a smallest σ -algebra containing G.

Proof. Consider the union of all σ -algebras containing \mathcal{G} :

$$A := \bigcap_{\mathcal{F} \supset \mathcal{G}} \mathcal{F}$$
, where \mathcal{F} is a σ -algebra.

We claim that A is the minimal family in question. Using Definition 3.1.1, it is easy to check that the intersection of arbitrarily many σ -algebras is itself a σ -algebra.

But, by definition, if $\mathcal{G} \subset \mathcal{A}'$ for a σ -algebra \mathcal{A}' , then $\mathcal{A} \subset \mathcal{A}'$, so $|\mathcal{A}| \leq |\mathcal{A}'|$. So \mathcal{A} is the smallest σ -algebra containing \mathcal{G} .

3.2 Borel σ -algebras